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ABSTRACT 

In  this paper, we compare the ranked probability score (RPS) and the probability score (PS) and examine the 
nature of the sensitivity of the RPS to distance. First, we briefly describe the nature of and the relationship between 
the frameworks within which the RPS and the PS were formulated. Second, we considsr certain properties of the 
RPS and the PS including their range, their values for categorical and uniform forecasts, and their “proper” nature. 
Third, we describe the RPS and the PS in a manner that reveals the structure of and the relationship between these 
scoring rules. Fourth, we consider the RPS with reference to two definitions of distance and examine the nature of 
the sensitivity of the RPS to distance. The comparison of the RPS and the PS suggests that the RPS rather than 
the PS should be used to  evaluate probability forecasta, a t  least in those situations in which the variable of concern 
is ordered. 

1. INTRODUCTION 

The probability score (PS) formulated by Brier (1950) 
is considered by most, if not all, meteorologists to be the 

best” available scoring rule for evaluating probability 
forecasts. The status of the PS was recently further 
enhanced by the realization that the PS was a proper 
scoring rule (Murphy and Epstein 19673).4 However, 
meteorologists have indicated for some time the need for 
a scoring rule that is sensitive to distance15 a need based 
upon considerations of distance that are particularly 
relevant for forecasts of ordered variables such as temper- 
ature, precipitation amount, and ceiling height. Unfor- 
tunately, the PS does not, in general, satisfy this need. 
However, the ranked probability score (RPS) formulated 
by Epstein (1969) is sensitive to  distance (Stael von 
Holstein 1970). In addition, the RPS is a proper scoring 
rule (Murphy 1969d). The author believes that, hence- 
forth, the RPS rather than the PS should be used-4o 
evaluate probability foreeaSts of ordered variables.’ 

The purposes of this paper are (1) to compare the RPS 
and the PS and (2) to describe the nature of the sensitivity 
of the RPS to distance. Although the frameworks within 
which the RPS and the PS were formulated are not of 
particular concern in this paper, we briefly describe the 
nature of and the relationship between these frameworks 
in section 2. In section 3, we consider certain properties 
of the RPS and the PS. We describe the structure of the 

L( 

1 Supported in part by the National Science Foundation (Atmospheric Sciences Sec- 
tion) under Orant QA-1707 

2 Contribution Number 171 from the Department of Meteorology and Oceanography, 
The University of Michigan 

3 In addition, Murphy (1966) has shown that, in certain special situations, the PS is a 
measure of the value of forecasts (refer to section 2 of the present paper). For a detailed 
description of the nature and properties of the PS, refer to Murphy (196%). 

4 For a definition of proper scoring rules, refer to section 3 of the present paper. 
5 Whether or not a scoring rule is sensitive to distance depends upon the definition of 

the term “distance”  IS well as the scoring rule itself. However, for the present, we shall 
assume that a scoring rule is sensitive to distance i f  forecasts that concentrate their proba- 
bility ahout the event that occurs receive better scores. We consider two definitions of 
distance and examine the sensitivity of the RPS to distance in section 5. 

8 In section 5 ,  we indicate the nature of the concept of distance by considering (1) the 
differences between two forecasts and (2) two possible definitions of distance. 

7 If the variable of concern consists of only two events (e.g., rain and no rain), then 
“a11 reasonable scoring rules are sensitive to distance” (Stael von Holstein 1970). From 
another point of view, considerations of distance are not relevant in the two-event sitna- 
tion. Thus, scoring rules that are sensitive to  distance are of particular interest when the 
number of events exceeds 2. 

RPS and the PS and compare these structures in section 
4. In  section 5 ,  we consider the RPS with reference to 
two definitions of distance and examine the nature of the 
sensitivity of the RPS to distance. Section 6 contains a 
brief summary and conclusion. 

9. FORMULATION 

In  this section, we briefly consider the nature of the 
frameworks within which the RPS and the PS were form- 
ulated and the relationship between these frameworks. 

Let the (row) vector r = ( q ,  . . . , rK) denote a prob- 
ability forecast of an ordered variable that has been di- 
vided into K mutually exclusive and collectively exhaustive 
classes or states. Then, is the forecast probability of 
Class k (?‘,>o, p k = 1 ;  k=1, . . . , K ) .  

RANKED PROBABILITY SCORE 

The -RPS was formulated within the framework of a 
K action-K state cost-loss ratio decision situation (Ep- 
stein 1969 and Stael von Holstein 1970).8 The cost-loss 
matrix for this situation when K=5 is displayed in table 1. 
The set of actions {a l ,  . . . , a,) represents five decreasing 
levels of protection, and the set of states Is1, . . . , s 5 }  
represents five decreasing degrees (of severity) of weather. 
The quantity X represents the cost-loss ratio, the range 
of which is the unit interval [0,  11. The matrix upon which 
the RPS is based is a utility matrix, the elements of which 
are linearly related to the sum of the corresponding ele- 
ments in two matrices, the matrix in table 1 and its mirror 
image.g The RPS is the expected-utility measure (Murphy 
1966, 1969c) that results from such a matrix when the cost- 
loss ratio X is assumed to have a uniform probability 
distribution.’O The RPS when class j occurs, RPS,(r), 

8 The framework within which the RPS was formulated is an extension of the frame- 
work developed by Murphy (1966, 1969~). 

Themirrorimage of thematrix intablelisamatrixinwhich jand6-jare interchanged 
( j= l ,  2). A scoring qlle based upon the sum of these two matrices is less dependent (with 
regard to its values) upon the class that occurs than a scoring rule based upon only one Of 
these matrices. For example, if only the matrix in table 1 is considered, the maximum 
‘(minimum) value will be a strictly increasing (an increasing) function of the class number; 
and as a result, the range will not be symmetric about class 3 (p. 986 of Epstein 1969). 

10 The family of proper scoring rules that results if distributions other than the, uniform 
distribution are considered is described by Stael von Holstein (1970). 
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TABLE 1.-Cost-loss matrix for the decision situation within which 
the RPS was formulated when K = 6  

States 

Actions 31 I 2  Sa s4 8s 

can be expressed as 

(p. 987 of Epstein 1969). 

PROBABILITY SCORE 

The PS when class j occurs, PS,(r), can be expressed as 

Murphy (1966, 1969c) has shown that, whatever the 
original framework within which the PS was formulated, 
PS,(r) when K=2 is equivalent l2 to  the expected-utility 
measure EU,(r) formulated within the framework of the 
standard cost-loss ratio decision situation under the 
assumption that the cost-loss rat'io is uniformly distrib- 
uted. The matrix for the standard cost-loss ratio decision 
situation is displayed in table 2.13 Specifically, when K=2 

EUj(r)=l- (1/2)PS,(r), (3) 
where 

or 
PS,(r) =2 (1 - r,)2, 

PS,(r) = T:+ (1 - r5)2, (i zj) . 

Thus, PS,(r) in eq ( 2 ) ,  for K ( > 2 )  classes can be con- 
sidered to represent a natural but neutral extension of 
EU,(r) (refer to section 4 of the present paper). 

RANKED PRO5ABlLlTY SCORE AND PROBABILITY SCORE 

The framework within which the RPS was formulated 
can be considered to represent a generalization of the 
framework within which the measure EU,(r) was formu- 
lated. Thus, the RPS represents, in one sense, a generaliza- 
tion of the PS.14 When K=2, the RPS reduces to the PS. 

11 The PS represents the sum of the squared deviations of certain Indlcator variables 
(the components of the observation vector) from their expected values (the components 
of the forecast vector, i.e., the probabilities) and as such is a rather natural measure of 
the degree of association between the forecast and the observation. 

12 Two scoring rules are equivalent if the scoring rules are linearly related (Winkler 
and Murphy 1968b). 
n Murphy (1966, 1969~) considered only the matrix in table 2 and not its mirror image. 

Thus, the expected-utility measure E(U) (p. 867 of Murphy 1969~) is in eswnce equivalent 
but not identical to the expected-utility measure EUj(r). 

'4 We indicate in section 4, where the relationship between the RPS and the PS is 
examined in greater detail, that the RPS is, in another sense, a specialization of the PS. 

TABLE 2.--Cost-loss matrix for the standard cost-loss ratio decision 
situation 

States 

Actions 
81 82 

(weather) (no weather) 

X x a1 (protect) 
az (do not protect) 1 0 

Specifically, when K= 2, 

RIPS,( r) = 1 - (1/2)PS,( h)  . (4) 

3. PROPERTIES 

The properties of the PS, which have been described by 
Brier (1950), Hughes (1965), Murphy and Epstein (1967u, 
19676), and Sanders (1963, 1967) among others, have 
recently been summarized by Murphy (1969~). The 
properties of the RPS have been described by Epstein 
(1969), Murphy (1969d), and Stael von Holstein (1970). 
I n  this section, we briefly consider certain of these 
properties. 

RANGE 

The RPS, which has a positive orientation l5 and which 
assumes its values on the unit interval [0, 11, attains its 
maximum value of 1 when r5=l  &e., for a categorical 
forecast of classj) and its minimum value of 1- [max (j- 1, 
K-j)/(K-l)] when r1(rR)=1 and j 2  ( 5 )  (K+1)/2 
(i.e., for a categorical forecast of the class most distant 
from class j ) .  Thus, while the maximum value of the RPS 
is 1 regardless of which class occurs, the minimum value 
of the RPS depends upon the class that occurs. In  
particular, the RPS assumes its absolute minimum value 
of 0 only when r1(rK)=1 and j=K (1). For j # l  or K, 
the minimum value is greater than 0. The maximum and 
minimum values of the RPS are depicted in figure 1 for 
(a) K even and (b) K odd.16 

The PS, which has a negative orientation and which 
assumes its values on the interval [0, 21, attains its 
maximum value of 2 when r I = l  (i#j) (Le., for a cate- 
gorical and incorrect forecast) and its minimum value of 
0 when r,=l (i.e.,,for a categorical and correct forecast). 
Thus, the maximum and minimum values of the PS are 
not dependent upon which class occurs. 

CATEGORICAL FORECASTS 

For a categorical forecast, that is, when some rt  = 1, 
RPS,(r) in eq (1) reduces to 

RPS,(r) =1-(li-jl)/(K-l). (5) 

RPS,(r) in eq (5 )  is displayed in table 3(a) for the situation 
in which K=5. 

16 A scoring rule for which larger scores are better is said to have a positive orientation, 
and a Scoring rule for which smaller scores are better is said to have a negative orientation 
(Winkler and Murphy 19688). The RPS and the PS are examples of scoring rules with 
positive and negative orientations, respectively. 

16 The lines in figures I(a) and l(b) are intended to be schematic only. Since j is an 
integer, RPSj(r) is of course a discrete function of j .  Note that the maximum and 
minimum values are assumed only for categorical forecasts. 
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TABLE 3.-Scores assigned to categorical forecasts when K=6 and 
the scoring rule i s  (a) the RPS and (b) the PS 

(a) RPSiW 
j 

1 2 3 4 5 
1 1 3/4 112 1/4 0 
2 314 1 3/4 1/2 114 

i 3 1/2 3/4 1 3/4 112 
4 1/4 l/2 3/4 1 3/4 
5 0 114 112 314 1 

(b) PSj(r) 
j 

1 2 3 4 5 
1 0 2 2 2 2 
2 2 0 2 2 2 

i 3 2 2 0 2 2 
4 2 2 2 0 2 
5 2 2 2 2 0 

(a) K even 

I t  

O t  ’ 
K (K+2) K 
2 2  

i 
- -  I 

(b) Kodd 

FIGURE 1.-Maximum and minimum values of the RPS for (a) k’ 
even and (b) K odd. 

For a categorical forecast, PS,(r) in eq (2) reduces to 

2 if i#j. 
0 if i=j PSj(r) = 

PS,(r) in eq (6) is displayed in table 3(b) for the situation 
in which K=5. 

In table 3, note that, for i # j ,  the values of PS,(r) are 
constant, while the values of RPS,(r) depend upon the 
distance, in terms of classes, between i andj. 

UNIFORM FORECASTS 

As indicated by Epstein (p. 987 op. cit.), when the rk 
are all equal to l/K, RPS,(r) in eq (1) reduces to 

RPSl(r) = (2/3) + (WK)  + (j- 1) W-j)/KW- 1). (7) 

RPS,(r) in eq (7) assumes its minimum value of 
(4K+1)/6K when j = 1  or K and its maximum value of 
either (11K--1)/12K when j=(K+1)/2 and K is odd or 
(11K2-12K-2)/12K(K-1) when j=K/2  or (K+2)/2 
and K is even. Note that, in the limit, that is, as K in- 
creases indefinitely, RPS,(r) in eq (7) is bounded between 
2/3 and 11/12. 

When the ra  are all equal to 1/K, PSj(r) in eq (2) 
reduces to 

PS,(r) = (K- 1)/K. (8) 

Note that, in the limit, PSj(r) in eq (8) approaches 1. 

TABLE 4-Scores assigned to uniform forecasts when K=6 and the 
scoring rule i s  (a) the RPS and (b) the PS 

1 2 
f 
3 4 5 

(a) RPSiW 0. 70 0.85 0. 90 0.85 0. 70 
(b) PSi(r) 0.80 0.80 0.80 0.80 0.80 

The values of RPS,(r) in eq (7) and PS,(r) in eq (8) 
are displayed in table 4(a) and 4(b), respectively, when 
K=5. Note that PS,(r) is constant, while RPS,(r) is a 
maximum when j =  3 and a minimum when j =  1 or 5. 

PROPER A N D  STRICTLY PROPER SCORING RULES 

The concept of proper scoring rules was introduced 
into the meteorological literature by Murphy and Ep- 
stein (19673). In  that paper as well as in all the papers 
published through 1969 (Winkler and Murphy 1968a, 
19683; Murphy 1969c, 1969d, 1969e; Epstein 1969), the 
authors, in essence, identified two classes of scoring rules : 
(1) the class of proper scoring rules and (2) the class of 
improper scoring rules. In this paper and henceforth, me 
shall adopt the classification and terminology prescribed 
by Murphy (19693) and Stael von Holstein (1970). 

Let the (row) vector p=(pl, . . ., pK) denote the fore- 
caster’s true belief (judgment). Then, pr is the forecaster’s 
subjective judgment that class K will occur (pa 2 0, 
C p , = l ;  k=l, . . ., K ) .  Further, let S,(r) denote the 

score assigned by a scoring rule S to  a forecaster’s state- 
ment r when classj occurs, and let S (r, p) denote the 
forecaster’s (subjective) expected score when his state- 
ment is r and his judgment is p. Then, S is a proper 
scoring rule if 

k 

S(P, P) 2 S(r, PI, for all r, (9 )  

17 The scoring rule S i s  assumed to have a positive orientation. 



920 MONTHLY WEATHER REVIEW vol. 98, No.  I 2  

The difference between proper and strictly proper scoring 
rules can be described briefly as: (1) a proper scoring rule 
is defined in such a way that the fwecaster maximizes his 
expected score if he sets r equal to p, but a forecast r # p 
may also receive the same expected score, and (2) a strictly 
proper scoring rule is defined in such a way that the fore- 
caster maximizes his expected score only if he sets r equal 
to  p. That is, a strictly proper scoring rule encourages 
complete honesty, while a proper scoring rule does not 
discourage complete honesty.18 Clearly, strictly proper 
scoring rules would be preferred in general to  proper 
scoring rules. 

The RPS and the PS are both strictly proper scoring 
rules (Murphy 1969b). Thus if a forecaster wants to 
maximize (minimize) his expected RPS (PS), he should 
make his forecast r correspond exactly to his judgment p. 
Note that any P # p will receive a smaller (larger) ex- 
pected score. 

4. STRUCTURE 

In this section, we describe the RPS and the PS in a 
manner that we believe, reveals the structure of and the 
relationship between these scoring rules. 

R A N K E D  PROBABILITY SCORE 

The RPS,(r) in eq (1) can also be expressed as 

K j-2 j-1 

2 = l  i = l  k=i+l 
RPS,(~)=~-[I/(K-I)I [ ~ l i - - j l < + 2 ~  (j-h)rirk 

an expression that reveals the structure of the RPS (see 
appendix). Note that the first term in brackets is a 
weighted sum of the squares of the r k  and the second and 
third terms are weighted sums of certain cross products of 

To facilitate this description of the structure of the 
RPS, we consider RPS,(r) in eq (12) with reference to the 
symmetric matrix r'r (r', a column vector, is the transpose 
of r), a matrix whose elements consist of the squares and 
cross products of the rk. In  table 5, we display RPS,(r) in 
terms of the elements of T'P when K=5. Table 5 reveals 
that, for example, 

the r k .  

Consider the coefficient matrices in table 5. Note that the 
coefficients in the j t h  row and j t h  column are equal to  
0. Further, note that the coefficients corresponding to the 
elements in r'r that straddle j (for example, ~ 1 ~ 3 ,  rlr4, and 
r1r5 when j=2) are also equal to O . I g  The coefficient of a 
square element, that is, an element on the (principal) 
diagonal of r ' ~ ,  depends upon the absolute difference 

18 The concept of strictly proper (or proper) scoring rules can also be given another inter- 
pretation. From this point of view, the vector p consists of the sample climatological prob- 
abilities of the Kclasses (Brier 1950). The RPS (PS) is defined in such a manner that a 
forecast of the sample climatological probabilities maximizes (minimizes) the expected 
score for a constant forecast over the sample. 

19 Note that, when j= 1 or K ,  no cross product elements straddle j .  

TABLE 5.-RPSj (r) expressed in terms of the elements of the matrix 
r'r for  the situation in which K = 6  

r'r 
8 rlri r m  r1r4 rlrs 
r m  rz" r m  rzr4 r m  
rira rira r: r m  rars 
rlr4 r m  rv4 r: r4r6 

j=1: RPSI(r)=1-(1/4) (sum of elements in r'r multiplied by their respective coefficients 
r m  r m  ran r m  1; 

below) 
0 0 0 0 0 
0 1 1 1 1 
0 1 2 2 2 
0 1 2 3 3 
0 1 2 3 4 

j=2: RPSz(r)=l-(1/4) (sum of elements in r'r multiplied by their respective coefficients 
below) 

1 0 0 0 0 
0 0 0 0 0 
0 0 1 1 1 
0 0 1 2 2 
0 0 1 2 3 

j=3: RPSz(r)=l-(1/4) (sum 01 elements in r'r multiplied by their respective coe5cients 
below) 

2 1 0 0 0 
1 1 0 0 0 
0 0 0 0 0 
0 0 0 1 1 
0 0 0 1 2 

j=4:  RPSdr)=1-(1/4) (sum of elements in r'r multiplied by their respective coeftlcients 

3 2 1 0 0 
2 2 1 0 0 
1 1 1 0 0 
0 0 0 0 0 
0 0 0 0 1 

below) 

j = 5 :  RPSs(r)=1-(1/4) ( s u m  of elements in r'r multiplied by their respective coefficients 
below) 

4 3 2 1 0 
3 3 2 1 0 
2 2 2 1 0 
1 1 1 1 0 
0 0 0 0 0 

between the class number of concern (i, say) and the class 
number that occurs ( j ) .  The coefficient of a cross product, 
that is, an off-diagonal, element is equal to  the coefficient 
assigned to the diagonal element in its row if it  is above the 
diagonal and equal to the coefficient assigned to the diag- 
onal element in its column if it is below the diagonal. 

The symmetry of the RPS is evident upon examination 
of table 5. This symmetry facilitates the expression of the 
RPS for different values of K and j .  

PROBABMTY SCORE 

The PS,(r) in eq (2) can also be expressed as 

Note that the first term in eq (13) is twice the sum of the 
squares of the r, (excluding r;) while the second term is 
twice the sum of the cross products of the rt (excluding 
rir5 for i<j and rjrk for k>j). 

K K  
a Note that PSj(r) can be expressed simply as 2 rd  k, ( i , k # j )  

i = l  k=i 
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TABLE 6.-PSi(r) expressed in terms of the elements of the matrix 
r‘r for  the situation in which K = 6  

r’r 

r: r1r2 7113 TI14 7115 

rirz rf r m  r214 r215 

nra rzra r3” r3r4 far5 

llr4 r ~ r 4  ran 4 1 4 1 6  

r1rs r275 r 3 n  TlTS 1: 

j=1: PSl(r)=sum of elements in r’r multiplied by their respective coefficients below 

0 0 0 0 0 
0 2 1 1 1 
0 1 2 1 1 

0 ,  1 1 2 1 
0 1 1 1 2 

j = 2 :  PSz(r)=sum of elements in r’r multiplied by their respective coefficients below 

2 0 1 1 1 
0 0 0 0 0 
1 0 2 1 1 
1 0 1 2 1 
1 0 1 1 2 

j=3: PSi(r)=sum of elements in r’r multiplied by their respective coefficients below 

2 1 0 1 1 
1 2 0 1 1 
0 0 0 0 0 
1 1 0 2 1 

1 1 0 1 2 

j=4 :  PS&(r) =sum of elements r’r multiplied by their respective coe5cients below 

2 1 1 0 1 

1 2 1 0 1 
1 1 2 0 1 
0 0 0 0 0 
1 1 1 0 2 

i = 5 :  PSs(r)=sum of elements in r’r multiplied by their respective coe5cients below 

2 1 1 1 0 

1 2 1 1 0 
1 1 2 1 0 
1 1 1 2 0 
0 0 0 0 0 

PS,(r) in eq (13)  is displayed in table 6 in terms of 
the elements of the matrix r’r when K=5. Note that, as 
in the case of RPS,(r), the coefficients in the j th  row and 
j t h  column arc equal to 0. However, note that, in the 
case of PS,(r), all the other coefficients are nonzero. 
Specifically, the square elements all have coefficients 
equal to  2, while the cross product elements all have 
coefficient,s equal to 1. 

The symmetry of the PS is evident upon examination of 
table 6. 

RANKED PROBABILITY SCORE AND PROBABILITY SCORE 

The differences between the RPS and the PS, which are 
revealed by a comparison of tables 5 and 6, can be 
summarized briefly as follows: the RPS assigns to the 
elements in the symmetric matrix r’r weights equal to 
their distance, in class numbers, from class j ,  while the 
PS assigns to all the elements equal weights. 

TABLE 7.-Diflerence between RPSi(r) and PS,’(r) expressed in terms 
of the elements of the matrix r‘r for the situation in which K=6 

0 0 0 0 0 
0 3 1 1 1 
0 1 2 0 0 
0 1 0 1 -1 
0 1 0 -1 0 

j=2 :  RPSz (r)-PSl(r) =(1/4)(sum of elements in r’r multiplied by their respective 
coefficients below) 

3 0 2 2 2 
0 0 0 0 0 
2 0 3 1 1 
2 0 1 2 0 
2 0 1 0 1 

j = 3 :  RPSa (r)-PS;(r)=(l/4)(sum of elements in r’r multiplied by their respectivp 
coefficients below) 

2 1 0. 2 2 
1 3 0 2 2 
0 0 0 0 0 
2 2 0 3 1 
2 2 0 1 2 

j = 4  RPSr (r)-PS;(r)= (1/4) (sum of elements in r‘r multiplied by their respective 
coefficients below) 

1 0 1 0 2 
0 2 1 0 2 
1 1 3 0 2 
0 0 0 0 0 
2 2 2 0 3 

j=5:  RPSs (r)-PS;(r) =(1/4) (sum of elements in r’r multiplied by their respective 
coe5cients below) 

0 -1 0 1 0 
-1 1 0 1 0 

0 0 2 1 0 
1 1 1 3 0 
0 0 0 0 0 

To facilitate the comparison of the RPS and the PS, 
we transform PS into PS*, a scoring rule with a positive 
orientation on the unit interval [0, 11 that is linearly 
related to PS. Specifically, 

(14) 
PS,*(r) and RPS,(r) possess the same orientation and 
range. 

In  table 7, we display the difference between RPS,(r) 
and PS:(r) in terms of the elements of the matrix r’r 
when K=5. The coefficients in thejth row and j th  column 
are, of course, equal to 0. Note that the coefficients of the 
square elements are positive and decrease in both direc- 
tions away from class j .  Further, note that the coefficients 
of the cross product elements are all positive, except those 
for T ~ T ~ ( T , T ~ )  whenj=l  (5). Thus, when K=5, RPS,(r) is 
greater than PS;(r) for all r when j=2,  3, or 4 and for 
most, but not all, r when j =  1 or 5.z1 

PS,*(r) = 1 - (1/2)PSj(r). 

U 

21 The difference between RPSj(r) and PS:(r) is positive for all r when K=3 and for 
most, but not all, r when K=4. 



vel. 98, No. I2 922 MONTHLY WEATHER REVIEW 

In  summary, the PS is, in essence, an unweighted or 
neutral scoring rule while the RPS is a weighted scoring 
rule. Thus, in a sense, the RPS is a specialization of the 
PS, although equal weights themselves are, in reality, 
special weights. 

5. SENSITIVITY TO DISTANCE 

I n  section 1, we stated that the RPS was sensitive to 
distance. To indicate the relevance of the concept of dis- 
tance, a t  least in an intuitive manner, consider the fore- 
casts r = (0.0, 0.1, 0.3, 0.4, 0.2) and r’ = (0.0,0.3, 0.1, 0.4, 
0.2) on an occasion when class 4 occurs. Note that r and B’ 
consist of the same probabilities and that r4 = T: = 0.4; 
the difference between I and r’ is simply that r2 = 0.1 and 
r3 = 0.3, while ri = 0.3 and ri = 0.1. The PS would 
assign r and IT’ the same score (0.50).22 However, if the 
variable of concern is ordered, many meteorologists and 
others would consider, no doubt, r to be a better forecast 
than r’. The basis for this conclusion would be, in general, 
that r is closer than r‘ to  class 4. Thus, the concept of 
distance appears to  be of relevance in evaluating forecasts, 
at  least if the forecasts relate to ordered variables. The 
RPS, which assigns weights to  the elements of the matrix 
r’r according to their distance from the class which occurs, 
takes distance into account (see below). Specifically, the 
RPS would assign r and B’ the scores 0.9475 and 0.9275, 
respectively. In  this section, we consider the RPS with 
reference to two definitions of distance and examine the 
nature of the sensitivity of the RPS to distance. 

TAULS SUMS 

Stael von Holstein (1970) has formulated one such 
definition according to which a forecast r’ is more distant 
than a forecast r from the class that occurs 0’) if r’ # r and 

I&;>R,, ( i=l ,  . . ., j-1), (15) 

RiLR,, ( i= j ,  . . ., K-1) (16) 
and 

where 
i 

k=l 
R, = C r k .  

Then, a scoring rule S (say) is sensitive to  distance accord- 
ing to inequalities (15) and (16) if 

whenever r’ is more distant than R from class j (refer to 
footnote la). This definition of distance treats the tailsz3 
of a forecast separately and implies that any portion of 
either tail of r’ contains a t  least as much mass, that is, 
probability, as the same portion of that tail of R. In  par- 
ticular, this definition does not permit the transfer of 
mass from one kail to the other.24 Stael von Holstein (1970) 

22 The PS is not, of course, the only scoring rule that would assign I and I’ the same 
score. In  fact, prior to the formulation of the RPS, all known strictly proper scoring rules 
would have assigned c and r‘ the same score. (j 
a The tails of a forecast are defined with respect t o  the class that occurs (1). The left-hand 

tail consists of the r k  for which k < j ,  and the right-hand tail consists of the T k  for which 
k>j. 

24 Mass, that is, probability, can of come be transferred to or from class j and either tail. 

shows that the RPS is sensitive to distance according to 
this definition of distance. 

SYMMETWBC SUMS 

Another definition of distance has been formulated by 
Murphy (1970)25 according to which r‘ is more distant 
than P from class j if r’ # H and 

(17) C;<&l,, [ i=O,  1, . . ., max (j-1, IC-j)] 
where 

Then, the scoring rule S is sensitive to distance according 
to inequality (17) if 

whenever B’ is more distant than r from class j .  This 
definition of distance, which treats symmetric portions of 
the tails about class j simultaneously, is based upon a 
less restrictive assumption concerning the nature of the 
differences between r’ and r than that upon which Stael 
von Holstein’s definition is based. In  particular, this 
definition permits the transfer of mass from one tail to  
the other. However, we can show rather easily that the 
RPS is not sensitive to distance according to this defini- 
tion of distance. 

WPS SENSITUVOUY TO DISTANCE 

To indicate the nature of the sensitivity of the RPS to 
distance, four forecasts for a situation in which K = 5  
and j = 3  are displayed in table 8. An original forecast B 

has been modified in three different ways to yield, in 
turn, the forecasts IT*, r’, and P”: (1) for r*, 0.10 is trans- 
ferred from class 1 to class 2 [r* is less distant than r 
according to inequalities (15), (16), and (la), and the 
mass remains in the same tail], (2) for R’, 0.02 is trans- 
ferred from class 1 to class 4 [r‘ is less distant than IT 
according to (17) but not according to inequalities (15) 
and (16), and the mass moves to the other tail], and (3) 
for r”, 0.10 is transferred from class 1 to class 4 [R” is 
less distant than u according to inequality (17) but not 
according to (15) and (16), and the mass moves to the 
other tail]. Note that BPS3(r”) <RBS3(r)<RPS3(r’) 
<RPS3(r*). The fact that the RPS is sensitive to distance 
according to inequalities (15) and (16) ensures that EPS3(a*>> 
RPS8(r), while the fact that RPS3(r”)<RPS3(r) indicates 
that the RPS is not sensitive to  distance according to  
(17). However, the fact that RPS3(r’)>BPS3(r) implies 
that the RPS is sensitive to distance for certain transfers 
of mass from one tail to the other. 

Consider two forecasts r and r’ where rk=r,-E, 
r:=rn+E, and ri=rk for all k#m, n [k, m, n=l,  . . ., K ;  
m<n; O < E <  min ( T ~ ,  l - ~ ~ ) ] .  Thus, F is transformed into 
r’ by transferring a mass E from class m to  class n. Then, 

RIPS,(” >> (<) RPS,(r) 

Refer also to Murphy and Epstein (1967a, pp. 763-754) and Stael von Holstein (1970). 
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TABLE 8.-Four forecasts that indicate the nature of the sensitivity of 
the RPS to distance 

Forecasts RPSs (*)  

r =(0.10, 0.10, 0.60, 0.10, 0.10) 
r*=(0.00,0.20, 0.60.0.10, 0.10) 
r' =(0.08, 0.10, 0.60, 0.12, 0.10) 
r"=(O.OO, 0.10, 0.60, 0.20, 0.10) 

0.9750 
0.9775 
0.9757 
0.9725 

if 

where 

and 

TABLE S.-Terms in inequality (18) f O T  the forecast pairs (a) (r, r*), 
(b) (r, r'), and (c) (r, r") (refer also to table 8) .  [LHS (RHS) refers 
to left (right)-hand side of inequality (18) .I 

-R - Forecast pair rn n t j ko kn kk LHS RHS 

(a) (r, r*) 1 2 0.10 3 3 1.10 0 1.10 0.05 

(c) (r, 1") 1 4 0.10 3 3 0.10 0 0.10 0.15 
(b) (r, r') 1 4 0.02 3 3 0.10 0 0.10 0.03 

2 occurs. However, with a scoring rule that is in some 
sense sensitive to  distance, such problems are inevitable. 
While the RPS is, in the author's opinion, the best scoring 
rule available to evaluate probability forecasts of ordered 

K variables, we must examine the sensitivity of other 
expect ed-u tili ty measures to distance . 

(T:-z;> - (f,  - j>> ( < 1 (n- m>€P (1s) 

Zf= C (k-n)rk! 
k=n+l 

K 

k = l  
io=c hk. 

However, since the RPS is sensitive to distance according 
to inequalities (15) and (16) and as a result RPS,(r')> 
RPS,(r) if nsj and RPS,(r')<RPS,(r) if m>j, the situa- 
tions of particular interest are those in which m<j<n, 
that is, in which the mass ( E )  is transferred from the left 
to the right t a l z 6  In  such situations, ic'n", the right-hand 
portion of the first moment of k abolit n, is in the right 
tail; and E:, the left-hand portion of the first moment 
of k about m, is in the left tail. We shall refer to and 
E: as the right and left partial tail moments, respectively. 
Then, the first term in inequality (18) is the difference 
between the right and left partial tail moments, while 
the second term in (18) is the difference between the first 
moment of k about zero (zo), that is, the mean class 
number, andj ,  the number of the class that occurs. Thus, 
inequality (18) indicates that the sensitivity of the RPS 
to the transfer of mass depends upon the relative magni- 
tudes of the difference between the partial tail moments 
and the difference between the mean class number and j 
(for particular values of m, n, and E). In  table 9, we display 
the terms in inequality (18) for three pairs of forecasts: 
(a) (r, r*), (b) (r, r'), and (c) (r, r") (refer also to table 8). 
An examination of table 9 and similar tables for other 
forecasts and transfers of mass will reveal something of 
the nature of the sensitivity of the RPS to transfers of 
mass between the tails of forecasts.27 

The nature of the sensitivity of the RPS to distance does 
not, of course, ensure that we as evaluators will always be 
completely satisfied with the scores themselves. For ex- 
ample, the RPS assigns the same score (0.925) to the 
forecast r=(0.5, 0.3, 0.1, 0.1, 0.0) whether class 1 or class 

28 The situation in which a mass (e) is transferred from class n to class m would, of 

27 A full treatment of the transfer of mass problem would require the consideration of a 
c o m e ,  yield similar results. 

vector t = ( q  . . ., CR) where r , + e , > ~ ,  Zr,=l, and ZCk=o (k -1 ,  . , ., K ) .  
k t 

6. CONCLUSION 

The relationship between the frameworks within which 
the PS and the RPS were formulated was briefly described 
in section 2. Certain properties of the RPS and the PS 
are described in section 3, including their range (the 
minimum value of the RPS depends upon which class 
occurs) , their values for categorical and uniform fore- 
casts, and their strictly proper nature. In  section 4, we 
expressed the RPS and the PS in terms of the matrix 
r'r, the elements of which are the squares and cross 
products of the rk (the components of the forecast vector 
r). The comparison of the RPS and the PS reveals that 
(1) in the RPS the elements are weighted by their dis- 
tance, in terms of the differences between class numbers, 
from the class that occurs ( j )  and (2) in the PS the ele- 
ments are all weighted equally. In  the two-class situation, 
in which the concept of distance is not particularly 
meaningful, the RPS and the PS are equivalent, that 
is, linearly related. In  section 5 ,  we examined the sen- 
sitivity of the RPS to distance (the PS is not sensitive 
to distance). We found that the RPS is sensitive to 
distance according to one definition of distance but not 
according to another less restrictive definition of distance. 
The examination of the RPS has revealed something 
of the nature of the sensitivity of the RPS to distance. 

As indicated in the introduction, meteorologists con- 
cerned with the evaluation of probability forecasts have 
indicated the need for a scoring rule that possessed the 
desirable properties of the PS and that in addition was 
in some sense sensitive to distance. The RPS is such a 
scoring rule. Thus, the RPS would appear to be a par- 
ticularly appropriate scoring rule for the evaluation of 
probability forecasts when sensitivity to distance is of 
concern, that is, when the variable of concern is ordered 
and the number of states of concern exceeds 2. The author 
would like to  encourage meteorologists to use the RPS, at  
least as a supplemental measure, in such situations SO 

that we as evaluators can accumulate information relative 
to its absolute and relative performance. 
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APPENDIX ACKNOWLEDGMENTS 

In  this appendix, we demonstrate that eq (1) and (12) 
are equivalent. Equation (1) can be rewritten as 

or 

or 

R PS, (r) = (3/2) - [ 1/2 (pi- 1 ) ] q(& Tn>’ 
i=l n=l  

or, since 

and 
K-1 K K c c r n =  c (i--jb*, 
i=j n=i+l i=j+l 

or 

The author would like to acknowledge the comments of Dr. C.-.A 
S. Stael von Holstein of The University of Stockholm and Dr. R. L. 
Winkler of Indiana University on earlier versions of this manuscript. 
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